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left-hand side operators together with the explicit treat-
ment of the boundary conditions leads to several limita-In this paper, we study an efficient strategy for constructing pre-

conditioners for the Newton–Krylov matrix-free methods without tions on the CFL number. This results in a slow conver-
forming explicitly the higher order matrix associated with each lin- gence to the steady state aerodynamic solutions. Many
ear step in the Newton iteration. These preconditioners are formed authors have tried to replace explicit boundary conditions
instead using an explicit derivation of a lower order matrix similar

with implicit ones (see for instance [24, 18, and 10]). Theyto that associated with a defect-correction procedure. Comparisons
showed that while high CFL number can be used, no clearof this methodology with the more standard defect-correction pro-

cedures, namely, the approximate factorization (AF) for structured advantages in terms of the CPU time as compared to ex-
grids and the ILU/GMRES for general grids, are then performed. plicit boundary conditions have been drawn. This is due
To illustrate the performance of our approaches, we present some to the mismatch between the right- and left-hand side oper-
numerical applications to the steady solution of a two-dimensional

ators. The Newton–Krylov methods in which the trueEuler flow. Q 1997 Academic Press

Jacobian is computed will eliminate this mismatch. How-
ever, the derivation of the higher order Jacobian is prohibi-
tive both in terms of the storage considerations and the1. INTRODUCTION
computational complexity. In the Krylov context only a

The implicit discretization of compressible flows leads matrix-vector product is needed. Therefore, the action of
to large sparse linear systems which need to be solved at the higher order Jacobian on any vector can be computed
each time step. In the derivation of this system, one often using a finite difference method through the Newton–
uses a defect-correction procedure in which the left-hand Krylov matrix-free methodology.
side of the system is discretized using a lower order approx- Newton–Krylov matrix-free methods were introduced
imation than for the right-hand side. This is due to the first, by Brown and Saad [4] and have been investigated
storage considerations and the computational complexity, for compressible Euler and Navier–Stokes equations using
as well as the fact that the resulting lower order matrix unstructured grids in [19], [20], and [9]. In [19] and [20],
is better conditioned than the higher order matrix. The the author has studied both the transonic and supersonic
resulting methods are only moderately implicit. In the case compressible Navier–Stokes flows. In [19], [20], and [9]
of structured, body-fitted grids, the linear system can easily the authors have used the block diagonal preconditioner.
be solved using approximate factorization (AF), which is However, most preconditioners require the explicit matrix.
among the most widely used methods for such grids. For If we compute this matrix explicitly, the advantage of the
unstructured grids, such techniques are no longer valid, matrix-free method will be lost. To overcome these diffi-
and the system is solved using direct or iterative methods. culties and hence to avoid forming the higher order matrix
Because of the prohibitive computational costs and the explicitly, we propose to form instead the explicit matrix
large memory requirements for the solution of the com- associated with a lower order approximation similar to that
pressible flows, iterative methods are preferred. associated with the defect-correction procedure. There-

In these defect-correction methods, which are used in fore, we propose in this paper to precondition the Newton–
most CFD computer codes, the mismatch in the right- and Krylov matrix-free algorithm by computing the precondi-

tioner associated with a lower order approximation. Thus,
the discretization scheme employed to derive the precondi-

* This work was supported by the National Aeronautics and Space
tioner is different than that used to compute the action ofAdministration under NASA Contract NAS1-19480 while the author
the Jacobian on a given vector (required in the Krylovwas in residence at the Institute for Computer Applications in Science

and Engineering. methods). The resulting methods combined with implicit
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boundary conditions will eliminate the mismatch between 2. DESCRIPTION OF THE EULER SOLVER
the left- and right-hand side operators, and hence will allow

2.1. Governing Equationsthe use of high CFL numbers. Therefore, we present also
an efficient CFL strategy in which the CFL may be adap- The two-dimensional Euler equations in conservative
tively advanced according to a relation that computes the form are
current CFL number using the previous CFL number and
the norm of the steady residue of the previous iterations. (1)Wt 1 F(W)x 1 G(W)y 5 0,

In TRANAIR [25] the authors used the matrix-free
method to solve the full potential problem. The precondi-

where W 5 (r, ru, rv, e)T, F 5 (ru, ru2 1 p, ruv, u(e 1 p))T,tioner is based on an incomplete factorization of an explic-
and G 5 (ru, ruv, rv2 1 p, v(e 1 p))T. In these expressions,itly generated matrix that is an approximation to the full
r is the density, u and v are the velocity components, e isJacobian on a reduced set of unknowns. This matrix em-
the internal energy, p is the pressure defined by p 5ploys the same discretization scheme and order of accuracy
(c 2 1)(e 2 r(u2 1 v2)/2), and c is a constant with c P 1.4used to compute the nonlinear residue except that it does
for air.not include the full linearization of the upwinding and the

After changing the variables into the curvilinear coordi-pseudo-unknowns are eliminated which is quite different
natesthan the strategy proposed in this paper. Moreover, in

strongly transonic flow this matrix gives a significant inade-
t 5 t, j 5 j(x, y), h 5 h(x, y),quate definition of the linerarized Newton problem itself

[25]. In [2], the Newton method is used to solve a steady
we obtain the following set of equationssubsonic Euler and the Navier–Stokes problems. However,

the Jacobian matrix is derived explicitly and the action of
the Jacobian on any vector is computed exactly. The au- (2)W̃t 1 (F̃)j 1 (G̃)h 5 0.
thors form explicitly the matrix corresponding to a first-
order or second-order discretization scheme which is then Here W̃ and the contravariant flux vectors, F̃ and G̃, are
used in two different ways: (1) in the preconditioning of defined in terms of the Cartesian fluxes and the Jacobian
the linear system, and (2) as partial matrix-vector products determinant of the coordinate system transformation,
in the iterative solver. When the first-order scheme is used through the relations
in the right-hand side, the resulting method corresponds to
the defect-correction method. However, since the authors

W̃ 5 J21W,study only the subsonic case, the convergence properties
will be similar to that of Newton’s method for the later F̃ 5 J21(jtW 1 jxF 1 jyG),
stage of the convergence process toward the steady solu-

G̃ 5 J21(htW 1 hxF 1 hyG),tion. This is not the case for the transonic flow where the
mismatch between the right- and left-hand side will prevent
the scheme from reaching the Newton convergence prop- and
erties. Therefore, the left-hand side should be computed
using the same order of accuracy as the one used for the

J 5
­(j, h, t)
­(x, y, t)right-hand side in order to reach the convergence proper-

ties of Newton’s method. However, because of the prohibi-
tive computational and storage cost, computing a higher

5 det S jx jy

hx hy
D.order Jacobian explicitly is not a viable approach. The

strategy developed in this paper presents an alternative to
this approach.

From now on, the tilde in the expressions of W̃, F̃, and G̃In the next section, we describe the Euler solver. We
will be omitted.then present in Section 3 the proposed methodology. Nu-

merical experiments are presented in Section 4, in which
2.2. Finite Volume Schemewe perform first a study of the defect-correction procedures

based on an approximate factorization (AF) method and An implicit finite volume discretization of the equation
on Krylov methods with both explicit and implicit bound- (2) can be written as
ary conditions. We then study the performance of our
methodology, which we compare to these defect-correction (Wn11

i, j 2 Wn
i, j) Dj Dh 1 (Fn11

i11/2, j 2 Fn11
i21/2, j) Dh Dt

procedures. The last section is devoted to some remarks
1 (Gn11

i, j11/2 2 Gn11
i, j21/2) Dj Dt 5 0, (3)and extensions.
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where the values are taken at the center of either the cell The different fluxes above are computed using Roe’s
approximate Riemann solver [14]. Three limiters are em-(i, j) or the interfaces of the cell (i, j) and its neighbours,

and the superscripts refer to the iteration in time. To com- ployed: minmod, Superbee, and Van Leer. The Jacobians
are evaluated using the first-order Roe scheme or the first-pute the fluxes above, we shall use a flux splitting approach,

which is defined for F by (see [17]) order flux-vector split scheme [17], which corresponds to
the true partials of the positive and negative flux vectors
as described earlier. However, in the context of the defect-F 5 F1 1 F2,
correction method, the flux-vector split scheme has been
shown to give improved convergence rates over the Roewith similar expressions for G. F1 is associated with the
matrices. Therefore, for the defect-correction approach,positive eigenvalues whereas F2 is associated with the neg-
the Jacobian matrices corresponding to the flux-vector splitative ones, and G1, G2 are defined analogously.
scheme are used in the left-hand side. This results in incon-Letting dW 5 Wn11

i, j 2 Wn
i, j , the implicit split-flux discreti-

sistent left- and right-hand-side operators.zation of (3) is given by

Remark 2.1. For most CFD codes, the implicit spatial
dWn 1 Dt(dj(F1 1 F2)n11 1 dh(G1 1 G2)n11) 5 0, differences are only first-order accurate. The matrix ob-

tained using a higher order approximation is very large,
where dj is defined by requires a lot of storage and a large operation count in its

evaluation, and may be very difficult to invert.

djF 5
1

Dj
[Fi11/2, j 2 Fi21/2, j ] (4) Following this remark, the implicit spatial differences

(the left-hand side) in Eq. (6) are approximated through a
first-order accurate scheme. The explicit spatial differencesand dh is defined similarly. This yields the following non-
(right-hand side) in Eq. (6) are approximated using thelinear system
higher order formulations of Roe’s scheme, which are
based on the work of Osher and Chakravarthy [13].(5)f (Wn11) 5 0.

2.3. Explicit Boundary ConditionsThis nonlinear system will be solved by using the pro-
posed approach of this paper, which is based on a Newton– The boundary conditions are derived using the locally
Krylov method (see future sections). We describe here the one-dimensional characteristic variable boundary condi-
more standard defect-correction method, which is based tions, which yield (for the derivations see for example [12]):
on the following linearization of first-order in time of the

2.3.1. Farfield-Subsonic Inflow.above nonlinear system

[I 1 Dt(d i
jA1· 1 d i

jA2· 1 d i
hB1· 1 d i

hB2·)] dWn
Pb 5 (1/2)Pa 1 Pi 1 sign(li

k)roco[kx(ua 2 ui) 1 ky(va 2 vi)]

5 2Dt(de
j Fn 1 de

hGn). rb 5 ra 1 [(Pb 2 Pa)/c2
o]

ub 5 ua 1 kx[(Pa 2 Pb)/(roco)]sign(li
k)The superscripts i and e above indicate that the implicit

and explicit operators are discretized using different vb 5 va 1 ky[(Pa 2 Pb)/(roco)]sign(li
k).

schemes. The dots indicate that the difference operators
apply to the product of the Jacobian matrices with dWn.

The point a in these expressions is outside the computa-The matrices A1, A2, B1, and B2 are defined by
tional domain, point b is on the computational boundary,
and i is inside the computational domain.

A1 5
­F1

­W
, A2 5

­F2

­W
,

2.3.2. Farfield-Subsonic Outflow.

B1 5
­G1

­W
, B2 5

­G2

­W
.

Pb 5 Pa

rb 5 ra 1 [(Pb 2 Pa)/c2
o]The compact form of the above equation corresponds to

the defect-correction procedure ub 5 ua 1 kx[(Pa 2 Pb)/(roco)]sign(li
k)

vb 5 va 1 ky[(Pa 2 Pb)/(roco)]sign(li
k).(6)AdWn 5 b.
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2.3.3. Impermeable Surface. the author has studied both transonic and supersonic com-
pressible Navier–Stokes flows. In [5, 6, 21, and 22], the
author has studied the convection-diffusion problem andPb 5 Pr 7 roco

the transonic compressible Euler flows. A study of the
ub 5 ur 2 kx(kxur 1 kyvr) strategy developed in this paper was performed by the

author in the report [21]. This approach focuses on thevb 5 vr 2 ky(kxur 1 kyvr).
construction of efficient preconditioners for the Newton–
Krylov matrix-free algorithm without forming explicitlyHere the point r is the center of the first cell from the
the higher order matrix representation usually requiredboundary and the minus sign in the first equation is used
in the standard Newton methods. In [22] the author hasif r is in the positive k direction from the boundary, and
combined this preconditioned Newton–Krylov matrix-freethe plus sign is used if r is in the negative direction from
algorithm with the Schwarz domain decomposition meth-the boundary.
ods in order to obtain an efficient parallel algorithm.

2.3.4. Farfield-Supersonic Inflow. In this case all eigen-
values have the same sign. Since we have an in-inflow case, 3.1. Newton’s Method
all variables are specified.

Consider the following nonlinear system of equations
2.3.5. Farfield-Supersonic Outflow. In this case also, all

eigenvalues have the same sign. Here, however, we have
(8)f (W) 5 0,an outflow case; therefore, all variables must be obtained

from the solution in the computational domain. All vari-
where f is a nonlinear function from RN to RN (N 5 2 orables are extrapolated from inside the computational do-
3). Newton’s method applied to (8) results in the follow-main to the boundary.
ing iteration:

2.4. Implicit Boundary Conditions • Define an initial guess dW0 .
In the implicit form, the above boundary conditions can • For k 5 0, 1, 2, ... until convergence do

be written in the form of operators formulated as functions
of the conservation vector W

Solve
(7)fb(W) 5 0

(9)J(Wk)dWk 5 2f (Wk).

and are implemented implicitly through Set

Wk11 5 Wk 1 dWk . (10)­ fb

­W
dW 5 2fb(W).

where J(Wk) 5 (­ f /­W)(Wk) is the system Jacobian.
For the compressible Euler case (see Section 2) thisUsing these implicit boundary conditions, the author

Jacobian corresponds to a higher order matrix representa-showed in [21] that, starting from a small initial CFL num-
tion. Using direct methods to solve the system (9), theber (10), the CFL may be adaptively advanced according to
memory requirements and the computational complexity
are prohibitive. In this case iterative methods are preferred

CFLn11 5 CFLn ·
i f (W)in21

i f (W)in , and the system (9) is solved only approximately. The re-
sulting method is called the inexact Newton method [7]
and corresponds to the following iteration

where the superscript refers to the iteration in time. As
the results in Section 4 will show, this is the key to the • Define an initial guess dW0

successful implementation of the preconditioned Newton– • For k 5 0, 1, 2, ... until convergence do
Krylov matrix-free method studied in this paper.

3. DESCRIPTION OF THE METHODOLOGY Solve

(11)J(Wk)dWk 5 2f (Wk).Newton–Krylov methods, first proposed by Brown and
Saad [4], have been investigated for compressible Euler Set
and Navier–Stokes equations using unstructured grids in
[19, 20, 9], and for structured grids in [5, 6, 21]. In [19, 20], Wk11 5 Wk 1 adWk . (12)
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where J(Wk) 5 (­ f /­W)(Wk) denotes the system Jacobian be poor. Any reasonable choice of « should attempt to
reach a compromise between these two difficulties. Theas before, and a is a parameter selected using a line search

or the trust region method ([4, 8]). technique for choosing the scalar « we use here is

3.2. Krylov Methods
« 5

Ï«mach

iwi2
2

· maxhu(u, w)u, typ uuwuj,
The iterative methods which we will use to solve the

linear system (11), which we rewrite as
where uwu 5 (uw1u, ..., uwnu)T, and typ u is a given value
depending on u and the problem to be solved. The Krylov(13)Jdw 5 2f,
method retained in this paper is GMRES. For more detail
we refer the reader to [4].

where f and its Jacobian J are evaluated at the current
iterate, are the Krylov methods. If w0 is an initial guess 3.3. Preconditioned Newton–Krylov
for the true solution of (13), then letting w 5 w0 1 Z, we Matrix-Free Methods
have the equivalent system

The combination of the Krylov matrix-free methods and
the inexact Newton method described above results in theJZ 5 r0,
Newton–Krylov matrix-free algorithm introduced in [4].
Although the matrix-free method is attractive because itwhere r0 5 2f 2 Jw0 is the initial residual. Let Km be the
does not form the matrix explicitly, the matrix is still re-Krylov subspace
quired for preconditioning purposes. In [19, 20, 9] the au-
thors settled for a compromise that uses a block-diagonalKm :5 Spanhr0, Jr0, ..., J m21r0j.
preconditioner. In this case the Newton–Krylov matrix-
free algorithm writesArnoldi’s method and GMRES both find an approxi-

mate solution • Define dWn
0 , an initial guess.

• For k 5 0, 1, 2, ... until convergence dowm 5 w0 1 Zm , with Zm [ Km ,

Solvesuch that either

D21 f (Wn
k 1 «dWn

k) 2 f (Wn
k)

«
5 2D21 f (Wn

k). (14)(2f 2 Jwm) ' Km

Setfor Arnoldi’s method or

Wn
k11 5 Wn

k 1 adWn
k ,

i f 1 Jwmi2 5 minw[w01Km
i f 1 Jwi2

where D is a block diagonal matrix, and a is the parameter
(5 minZ[Km

ir0 2 JZi2) introduced in Section 3.1. Most preconditioners require the
matrix explicitly. This is true for the ILU preconditioner.

for GMRES. Here, i.i2 denotes the Euclidian norm on RN However, as we mentioned earlier, the prohibitive memory
and orthogonality is meant in the usual Euclidian sense. requirements and the computational complexity for the

In these Krylov methods, only the action of the Jacobian higher order matrix representation, whether by analytical
J times a vector w, and not J explicitly, is required. In the or numerical means, make the explicit calculation of such
context of problem (8), this action can be approximated a matrix a difficult problem. Moreover, if we compute this
by a difference quotient of the form matrix explicitly the advantage of the matrix-free method

will be lost. In order to overcome these difficulties, instead
of computing the preconditioner from the system JacobianJ(u)w P

f (u 1 «w) 2 f (u)
«

,
(higher order matrix, which is unavailable explicitly for
our matrix-free version), we propose to form only, as in
the defect-correction procedure (6), the explicit Jacobianwhere u is the current approximation to a root of (8) and

« is a scalar. Selecting an optimal parameter « might be a matrix associated with a lower order approximation of the
Jacobian. We derive then an ILU preconditioner based ondifficult problem. If « is too small then the rounding errors

made in the numerator are amplified by a factor of order a lower order approximation to the true Jacobian. This
includes: (a) the Jacobian of a lower order discretization,1/« which leads to an inaccurate result. If, on the other

hand, « is too large then the approximation of J(u)w will (b) and the Jacobian obtained using a lower order discreti-
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zation that allows a less expensive analytical evaluation lations were performed on the same Sparc20 machine.
Since we are dealing with different methods which requireof elements.

Applying the resulting method to the fully implicit non- varying amounts of work at each time step, we believe that
the CPU time is the only true measure for comparing them.linear system (5) and (7) yields the following algorithm:
However, we also compare the iteration counts versus the

• Define dWn
0 , an initial guess.

steady-state residual norm for some cases.
• For k 5 0, 1, 2, ... until convergence do In our simulations the incomplete factorization method

we have used corresponds to ILU(0) in which we discard
Solve any elements that would introduce fill, and there was no

restart for the GMRES accelerator we used. The conver-
M21 f (Wn

k 1 «dWn
k) 2 f (Wn

k)
«

5 2M21 f (Wn
k). (15) gence criterion for the resulting linear solver (either in the

defect-correction procedures or within each linear step of
Set the Newton method) corresponds to a relative reduction

in the norm of the residual equal to 1023.Wn
k11 5 Wn

k 1 adWn
k

4.1. Defect-Correction Procedureswith a the parameter introduced in Section 3.1. The pre-
conditioner M21 is constructed using an approximation 4.1.1. Explicit Boundary Conditions. We start by com-
similar to that used to derive the matrix A of the defect- paring the results obtained using the approximate factor-
correction procedure (6) as described above (points (a) ization AF method and ILU/GMRES when the boundary
and (b)). This results in a combined discretization in which conditions are explicit. For these defect-correction proce-
for each linear step (15) of the Newton iteration the pre- dures, which correspond in their compact form to the rela-
conditioner is not derived from the actual higher order tion (6), the matrix A is computed using a first-order Van
system (11). Instead, this preconditioner is derived using Leer scheme while the right-hand side of the system is
an approximation of the Jacobian matrix that employs a computed using Roe’s scheme. In the approximate factor-
lower order discretization in a fashion similar to defect- ization method the maximum CFL allowed was equal to
correction procedure. 15, while it was equal only to 5 for the ILU/GMRES

method. In both cases we have used the maximum CFL
4. NUMERICAL RESULTS allowed. We observe that, to reach the same level of accu-

racy, the CPU time necessary for the AF method is almost
The test problem on which we studied the performance twice as much as the time necessary to reach the same

of the methodology developed here corresponds to a level of accuracy with the Krylov method (ILU/GMRES)
NACA0012 steady transonic airfoil at an angle of attack as can be seen in Fig. 1, which shows the logarithm of the
of 1.258 and a freestream Mach number of 0.8. Since the steady state residual norm versus the CPU time.
standard solution of this problem can be obtained using
the C-grids 128 3 32 cells, this mesh is the one retained 4.1.2. Implicit Boundary Conditions. We first compare

the different results obtained using different CFL numbers.in this study. For a study of the methodology proposed
here on a coarser mesh we refer the reader to [21]. In The results are presented in Fig. 2 where we show a com-

parison of the logarithm of the steady residual norm versusall computations performed herein the solution obtained
agrees with the standard one [12]. The initial code employs the CPU time. These calculations are performed using a

CFL number equal to 5, 100, and 500 respectively. Fromthe discretization, described in Section 2 with explicit
boundary conditions, over a body-fitted grid. It was devel- these comparisons we observe that using a high CFL num-

ber improves the convergence rate. However, when theoped initially in [12] and used a linear solver of an approxi-
mate factorization (AF) type (see for example [3]). CFL number is larger than 100, no further improvement

can be obtained. This is due to the mismatch of the left-Before studying the preconditioned Newton–Krylov
matrix-free methods proposed in this paper, we shall first and right-hand side operators. We will see in the next

section that this drawback can be removed using the pre-study and compare the performance of the defect-correc-
tion procedures of AF and ILU/GMRES types. This pre- conditioned Newton–Krylov matrix-free methodology de-

scribed in Section 3. We now validate the CFL strategyliminary study will provide us with a basis for comparisons
of our methodology. We start by performing this study described in Section 2. In Fig. 3 we compare the results

obtained using a CFL number of 100 with those obtainedusing explicit boundary conditions. We then study the ef-
fect on the defect-correction procedure based on the ILU/ using the CFL strategy described in Section 2. This compar-

ison shows the feasibility of these techniques and theirGMRES method of replacing the explicit boundary condi-
tions by implicit ones. Finally, we study and compare our validation. It also shows that the converged solution is

obtained in about the same CPU time. In Fig. 4, we showapproach with these defect-correction methods. All calcu-
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FIG. 1. Steady-state residual versus CPU time for approximate factorization (AF) and ILU/GMRES solvers.

the CFL versus the iteration count. To illustrate the perfor- when we use the implicit boundary conditions as compared
to the explicit ones. This comparison highlights the gainmance of the implicit boundary conditions as compared to

the explicit ones, we show in Fig. 5 the comparison of the obtained using the implicit boundary conditions when the
Krylov methods are used as linear solvers. It should besteady state residual norm versus the CPU time for the

converged solution obtained using explicit boundary con- noted that, in using the AF solver, the implicit boundary
conditions do not improve the convergence rate becauseditions with a CFL number equal to 5 and using the implicit

boundary conditions with a CFL equal to 100. We observe the AF method is based on an approximation of a first-
order of the linear system to be solved.that an improvement in terms of the CPU time is obtained

FIG. 2. Steady-state residual versus CPU time for ILU/GMRES solver with different CFL: 5, 100, and 500.
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FIG. 3. Steady-state residual versus CPU time for ILU/GMRES solvers with CFL constant equal 100, and with adaptively increasing CFL.

4.2. Preconditioned Newton–Krylov the flux in the right-hand side, which corresponds to the
higher order Roe scheme. The techniques used in theMatrix-Free Algorithm
choice of the finite differencing parameter are described
in Section 3. The preconditioner M21 in (15) correspondsWe study now the preconditioned Newton–Krylov

matrix-free method developed in Section 3 with full to an incomplete factorization without fill (ILU(0)). As
in the defect correction procedure, the matrix M isimplicit boundary conditions (see (2.4)). This method

corresponds to the algorithm (15). In this algorithm, computed using a first-order Van Leer scheme. To take
full advantage of the convergence properties of thethe fluxes involved in the finite difference quotient are

computed using the same scheme as that used to compute Newton method, and thus to allow a more rapid asymp-

FIG. 4. CFL versus iteration count for ILU/GMRES solvers.
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FIG. 5. Steady-state residual versus CPU time for ILU/GMRES solvers with explicit boundary conditions and implicit boundary conditions.

totic convergence to the steady state solution, we use step we perform four Newton iterations. The stopping cri-
terion corresponds to a steady residual norm of 1029. Thethe CFL strategy described in Section 2 and validated

above. starting CFL number is equal to 60, which allows us to
accelerate the early stages of the nonlinear iteration, re-To study the performance of this preconditioned

Newton–Krylov matrix-free algorithm, we compare it with sulting in a distinct advantage over polyalgorithmic proce-
dures. In fact, one may attempt for example to combine thethe defect correction method of ILU/GMRES type studied

above in which the CFL is equal to 100. In both cases, the Newton–Krylov methodology with the defect correction
procedure in order to accelerate the early stages of theboundary conditions are implicit. The results are presented

in Fig. 6. This figure shows the logarithm of the steady nonlinear iteration, especially in this transonic regime (see
Section 5). The ending CFL number is equal to 28603.residual norm versus the CPU time. For each implicit time

FIG. 6. Steady-state residual versus CPU time for defect correction (ILU/GMRES) and Newton–Krylov matrix-free solvers.
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FIG. 7. Steady-state residual versus iteration count for approximate factorization (AF), ILU/GMRES with explicit boundary conditions,
ILU/GMRES with implicit boundary conditions, and Newton–Krylov matrix-free solvers.

In Figs. 7 and 8 we show a comparison of the logarithm 5. CONCLUSIONS
of the steady state residual norm versus the iteration counts
and the CPU time for the preconditioned Newton–Krylov In this study we have demonstrated the performance of

the preconditioned Newton–Krylov matrix-free algorithmmethod proposed in this paper and the three other defect-
correction methods studied above. Clearly, we observe that proposed in this paper.

We have performed only comparisons of the Krylovthe preconditioned Newton–Krylov matrix-free outper-
forms all of the other three methods. methods with the approximate factorization (AF) meth-

FIG. 8. Steady-state residual versus CPU time for approximate factorization (AF), ILU/GMRES with explicit boundary conditions, ILU/GMRES
with implicit boundary conditions, and Newton–Krylov matrix-free solvers.
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Krylov–Schwarz Methods in CFD, in ‘‘Proceedings of the Interna-ods. However, in [23], it was shown that the ILU/GMRES
tional Workshop on the Navier–Stokes Equations,’’ Notes inmethod outperforms the relaxation methods, therefore we
Numerical Fluid Mechanics (R. Rannacher, Ed.), Vieweg Verlag,

can conclude that the methodologies developed here out- Braunschweig, 1994.
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